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Highlights 

1. New generalized models are obtained for the dual-spin spacecraft with the 

constructional/mass-inertia asymmetry. 

2. New action-angle-solutions for the heteroclinic case of the dynamics are found. 

3. The Melnikow-Wiggins formalizm was used for the heteroclinic chaos analysis in the 

hamiltonian and non-Hamiltonian cases of the perturbations; the problems of the 

Melnikov-Wiggins methodology are indicated. 

4. Chaos suppression techniques are considered and new heteroclinic chaos suppressing 

schemes are suggested.
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Abstract 

The attitude dynamics of a dual-spin spacecraft (DSSC) and gyrostats-satellites is considered at the presence 

of the constructional asymmetry and at the action of the internal/external perturbations, including the friction 

between the coaxial DSSC bodies, electromotors’ torques applied to the rotor-body from the platform-body 

by internal engines, the counterelectromotive forces/torques in internal engines, internal plyharmonic 

disturbances and external magnetic perturbations. New/modified mathematical models and dynamical 

systems are obtained for the investigation of the DSSC chaotic dynamics. 
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Introduction 

The detailed exploration of the attitude motion of spacecraft and satellites still remains 

one of the main problems of the space-flight-dynamics. As an important part of these problems 

we can indicate the motion analysis of a dual-spin spacecraft (DSSC) and gyrostats (also 

gyrostats-satellites). The DSSC/gyrostats are widely used types of spacecraft among 

communications satellites-systems and observing geostationary satellites. The coaxial dual-spin 

scheme usually is used for providing the attitude stabilization of the spacecraft by the partial-

twist-method. The partial-twist-method implies the fast rotation only of the «rotor»-body. It 

allows to include into the «platform»-body exploratory equipment, and to implement space-

missions tests without rotational perturbations.  

It is possible to present concrete quite famous examples of DSSC, which were used in 

real space-programs. This is the well successful and long-continued project “Intelsat” (the 

Intelsat II launched in 1966), including 8-th generation of the geostationary communication 

satellites and Intelsat VI (1991), designed and built by Hughes Aircraft Company. The 

“Meteosat”-program (European Space Research Organization) used the DSSC-scheme; this 

program was initiated with Meteosat-1 in 1977 and operated with Meteosat-7 until 2007. The 

DSSC-construction was applied for the GEOTAIL mission launched in 1992 (and continued to 

operate in 2013) in the framework of the collaborative mission of Japan JAXA/ISAS and NASA, 

within the program “International Solar-Terrestrial Physics”. The constructional DSSC-scheme 

of spacecraft (with the despun antenna) was selected in Chinese satellites DFH-2 (STW-3, 1988; 

STW-4, 1988; STW-55, 1990). The Galileo Jupiter-mission (1989) also used the dual-spin 

scheme. Certainly, we should underline the world’s most-purchased commercial communication 

satellite’s types Hughes/ Boeing HS-376/ BSS-376 (e.g. Satellite Business Systems with the 

implementation of projects SBS 1, 2, 3, 4, 5, 6 / HGS 5, etc.) – this spacecraft-scheme has the 

spun-section with the propulsion system and solar drums, and the despun-section with the 
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payload and antennas. Very useful spacecraft models Hughes HS-381 (Leasat-project), HS-393 

(JCSat-project), HS-389 (Intelsat-project) also have the dual-spin structure. 

Especially interesting problems in the framework of the related modern research are the 

chaotic motion investigation and the chaos suppression in the DSSC dynamics at the action of 

external and internal perturbations. Here it is important to underline the problem of the detection 

of homo(hetero)clinic chaos in the DSSC phase space. The next step after the chaos detection is 

the task of its suppression/avoidance in the motion dynamics – there are multiple chaos 

control/suppressing techniques can be used; and most of them have the dissipative type of 

suppressing forces/torques, e.g. the external/internal resisting medium [Baozeng Y., Jiafang X.; 

El-Gohary A.; Iñarrea M.; Kuang J.L.; Leung A.Y.T.; Meechan P.A., Asokanthan S.F.; Zhou L.]. 

Also we ought to indicate corresponding related problems and results in the framework of 

nonlinear regular/chaotic dynamics [Anishchenko V.S., Astakhov V.V. at al.; Bainum P.M. at 

al.; Beletskiĭ V.V. at al.; Boccaletti S. at al.; Burov A.A.; Celletti A., Lhotka C.; Chaikin S.V.; 

Ge Z.-M., Lin T.-N.; Guckenheimer J.; Gutnik S.A.; Hall C.D. at al.; Holmes P. J.; Kinsey K. J.; 

Lin Yiing-Yuh, Wang Chin-Tzuo; Marsden J.E.; Meechan P.A., Asokanthan S.F.; Meng Y. et 

al.; Nazari M., Butcher E.A.; Pecora L.M. at al.; Rubanovskii V.M.; Sarychev V.A., Mirer S.A.; 

Seo at al.; Vera J.A.; Wiggins S.; Zhou at al.].  

Chaotic phenomena in the DSSC dynamical system were considered in the wide 

spectrum of works [e.g., Aslanov, Bao-Zeng, Chen, Doroshin, El-Gohary, Ge, Hall, Holmes, 

Iñarrea, Lanchares, Leung, Kuang, Meechan, Neishtadt, Or, Peng, Shirazi, Tong, et al.] – these 

results will be surveyed and discussed in details below in corresponding sections of the paper. At 

the same time, the problem of the heteroclinic chaos analysis/avoidance/suppression in the DSSC 

dynamics is very broad in its conceptual and instrumental content; this problem is far from the 

solution taking into account various dynamical aspects and tasks’ formulations. So, below we 

will consider the attitude dynamics of the asymmetric magnetized DSSC under the action of 

perturbations. Moreover, results of the paper will be connected with important practical 

applications, and will describe the asymmetric magnetized DSSC dynamics in the neighborhood 

of the cylindrical precession regime, which generalizes the cases of the free angular motion of 

the coaxial bodies systems, DSSC and gyrostats (gyrostat-satellites) at the presence of 

geometrical/ constructional/ inertia-mass asymmetries, and under the influence of the natural 

external/internal forces and torques, including the friction between the coaxial DSSC bodies, 

electromotors’ torques applied to the rotor-body from the platform-body by internal engines, the 

counterelectromotive forces/torques in internal engines, internal plyharmonic and external 

magnetic perturbations.  

Among the paper results will be presented new expanded and generalized 

mechanical/mathematical models, including canonical Hamiltonian forms of the perturbed 

dynamical systems for the asymmetric magnetized DSSC – these models will be collected in the 

first part of the paper (The Part I – The main models and solutions). Also in the second part of 

the paper (The Part II – The heteroclinic chaos investigation) the new analytical and numerical 

results of the application of the Melnikov’s-Wiggins’ methodology for the analysis of the 

heteroclinic chaos appearance/disappearance in the phase space of the DSSC will be obtained 

and demonstrated; and analytical and technical approaches for this chaos suppression/avoidance 

and corresponding suggestions will be given. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Mechanical and mathematical models 

1.1. The geometrical and inertia-mass parameters of the asymmetrical DSSC 

Let us consider the attitude dynamics of the DSSC at the presence of the constructional 

asymmetry and at the action of the internal/external perturbations, including the friction between 

the coaxial DSSC bodies, electromotors’ torques applied to the rotor-body from the platform-

body by internal engines, the counterelectromotive forces/torques in internal engines, internal 

plyharmonic disturbances and external magnetic perturbations. In this purpose we can present 

the mechanical model of the DSSC basing on the well-known coaxial-scheme construction with 

using the following coordinates systems (Fig.1): 

i i i iC x y z  the connected principal central frame of references of the coaxial body #i, or, 

equivalently, the coordinates system connected to the main axes of the inertia ellipsoid of the 

coaxial body i (i=1, 2; #1 – the rotor-body, #2 – the coaxial platform-body), where Ci – is the 

mass center of the body i. Here it is needed to note that the coaxial bodies can have the complex 

structure with the corresponding complex construction of the real DSSC’s rotor/platform, but 

from the mechanical point of view these bodies always have the natural inertial analogs as the 

inertia ellipsoids, which can be presented in the corresponding main axes. So, we will exactly 

consider the coaxial bodies as their inertia ellipsoids (Fig.1). In this frame the corresponding 

body has the principal inertia tensor with the diagonal form  

(1.1)  : , ,i i i i i i i iC x y z diag A B C   I . 

i i i iC x y z  the connected central frame of references of the coaxial body #i (i=1, 2), which 

is corresponded to the repositioning of the system i i i iC x y z  (in which the inertia tensor is 

principal) by the minimal final rotation around the point Ci into the position with the axis Cizi 

directed parallel to the axis of the relative rotation of the coaxial bodies (the constructional axis 

of the relative rotation of the DSSC: P1P2 at the fig.1). At this repositioning the inertia tensor 

loses the principal form at the corresponding orthogonal transformation with the rotational 

matrix Si; the corresponding inertia tensor is rewritten in the form with non-diagonal centrifugal 

inertia moments: 

(1.2)   1:i i i i i i i iC x y z     I S I S .  

For example, we can consider this out-of-plane final orthogonal transformation as a pair 

of serial rotations: on the angle αi around the “initial” direction of the axes i iC x  and, after that, 

on the angle βi around the “displaced” direction of the axes i iC y . Then we will have the 

following structure of the final rotational matrix Si 

(1.3) 

   

cos 0 sin 1 0 0

0 1 0 0 cos sin ;

sin 0 cos 0 sin cos

cos sin sin sin cos

0 cos sin ;

sin sin cos cos cos

i i

i i i i i

i i i i

i i i i i

i i i

i i i i i

 

 

   

    

 

    

   
   

  
   
      

 
 


 
  

S β α

S
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Fig.1. The geometrical DSSC-model and coordinates systems 

The geometrical plane Πi (i=1, 2) corresponds to the plane that is orthogonal to the axis 

of the coaxial relative rotation P1P2 and contains the body’s mass center Ci ( 1 2i iC PP  ). 

Also it is important to note the coincidence of the body’s connected plane i i iC x y  with the plane 

Πi. Moreover, the intersection of the plane i i iC x y  with the relative rotation axis is located exactly 

in the point Pi:  1 2i i i iP C x y PP  ; and we can indicate/define the constant coordinates of the 

point Pi in the frame 

(1.4)          : ; ; 0
i i

i i i i i i x i i y i iC x y z x P l y P l z P     .  

Also we will use the connected frames 2P xyz  (connected to the coaxial body-platform) 

and 1Px y z    (connected to the coaxial body-rotor) with the origins Pi and with axes which are 
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parallel to corresponding axes of systems 
i i i iC x y z :   

1 1 1 1 1 2 2 2 2 2;Px y z C x y z P xyz C x y z   . 

Now it is important to geometrically indicate/define the center of mass of the coaxial 

system C, and the geometrical point O on the coaxial axis P1P2 which corresponds to the 

“longitudinal level” of the system’s mass center. It is clear that the relative rotation of the coaxial 

bodies with their displaced (relative to the rotation axes) mass centers results in the “geometrical 

motion” of the position of the system mass center relative to both coaxial bodies. But the relative 

coaxial rotations of the bodies is fulfilled in such way that their mass centers describes circles 

around the points Pi in the planes Πi – therefore the system’s mass center position always 

remains on the “constant connected” plane Π  1 2;i O PP    at the geometrical motion 

relative to the coaxial bodies (Fig.1). Also it is geometrically clear that the “variable position” of 

the system’s mass center relative coaxial bodies always represents the formal intersection of the 

line C1C2 with the plane Π  1 2C C C  . Of course, the real mechanical angular motion of 

the system in the inertial space will be fulfilled around the “motionless/fixed” position of the 

mass center, so we will consider the above mentioned “geometrical motion” of the mass center 

as the auxiliary geometrical interpretation. 

After the definition of the geometrical positions of the points C and O we sequentially 

involve into consideration following auxiliary coordinates frames with the parallel axes (Fig.1): 

0 0 0 2 0 0 0 1 0 0 0 0 0 0; ; ;Ox y z P xyz Ox y z Px y z C Ox y z C Ox y z                (also we underline the 

coincidence of some axes: 0 0;z z z z        ).  

Based on the indicated coordinates frames the important mass-inertial and kinematical 

parameters are defined – these parameters and their components are calculated in the connection 

to the specific frames: 

     0 0 0 0, , ,Cx Ox Oy Oy C C         

(1.5)        
1

cos sin 0

sin cos 0 ;

0 0 1

T

 

 


 
     
 
  

δ δ δ δ   

(1.6) 

   

   

  

2

1

2 1

2 2

0 0 0 2 2

1 1

0 0 0 1 1

0 0 0 2 1

1 2

: , , ;

: , , ;

1
: ;

T

C x y

T

C x y

C C C

Ox y z OC l l OP

Ox y z OC l l OP

Ox y z OC M M
M M


     


        

     
 

ρ

ρ

ρ ρ δ ρ

 

(1.7) 
 

 

2

1

1

2

1

1

: ;

: ;

: ;

: ;

C

C C

C C

C C

C CO

C CC

C CC

C CC







  

  


 


   


     

ρ

ρ ρ

δ ρ ρ

ρ δ ρ
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where δ is the angle of the relative rotation of coaxial bodies;  δ is the matrix of the 

coordinates systems transformations:  

(1.8)    0 0 0 0 0 0: ; : ;Ox y z Ox y z C C         δ δ   

  δ is the back transformations matrix; 
2C ρ  is the vector of the mass center of the coaxial 

body-platform with its constant components presented in the frame 0 0 0Ox y z ; 
1C
 ρ is the vector of 

the mass center of the coaxial body-rotor with its constant components presented in the frame 

0 0 0Ox y z   ; 
C ρ is the mass center of the complete coaxial system with its variable components in 

the frame 
0 0 0Ox y z ;  Mi – is the mass of the coaxial body #i. 

1.2. The kinematical and dynamical parameters of the angular motion  

Let us describe the angular motion of the coaxial system in the inertial space assuming the 

motionless of the mass center of the coaxial system C. Then it is needed to involve the main 

inertial coordinate frame CXYZ (fig.1). So, we can distinguish the following aspects of the 

motion. It is clear that the DSSC coaxial system represents the mechanical system with four 

degree of freedom – three of them correspond to the angular motion of the platform around 

selected rotation pole (the mass center), and the fours degree of freedom describes the rotation of 

the coaxial rotor-body relative to the platform (the rotation of the rotor about coaxial axis P1P2 

by the angle δ). 

The angular motion of the coaxial bodies is described by the angular velocities, which can be 

written as vectors in the corresponding connected frames 

   2 2 2 2 1 1 1 1: , , ; : , ,
T T

C x y z p q r C x y z p q r    ω ω   

where ω  is the absolute angular velocity of the platform-body (around its mass center C2) which 

is written in the body-platform’s connected frame 2 2 2 2C x y z ; ω  is the absolute angular velocity 

of the rotor-body (around  its mass center C1) which is written in the body-rotor’s connected 

frame 1 1 1 1C x y z . Taking into account indicated degrees of freedom, independence of the angular 

motion from the selected rotation pole and the interconnection of the coordinates frames (1.8) we 

can write the following expressions for the components of the angular velocities: 

(1.9) 

cos sin ;

sin cos ;

;

p p q

q p q

r r

 

 



  

   

   

  

(1.10)    

σ – is the relative angular velocity of the rotor. 

Now we can write main dynamical values for the bodies and for the system. 

The body-rotor’s linear momentum and the angular momentum (about the system mass 

center C) are 
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(1.11) 
1 1

(1) (1)

1 1 1 1;abs

C C CM CC   Q v K K Q   

where the absolute velocity of the mass center of the rotor-body can be presented in projections 

on the axes :C      

(1.12) 

   

    

   

 

 

1 1 1 1 1 1 1 1 1

1 1 1

1

1

1

0

0

0

abs abs

C P C P

x

C y

PC CP ' PC

CO OP ' PC

lp p'

q q' l

r OP r'

         
 

       
 

                                                       

v v ω δ ω ω

δ ω ω

δ ρ



  

Then the angular momentum of the rotor relative to the point C in projections on the axes 

C      takes the form 

(1.13)           

 

 

1

1

1(1)

1 1

1

0

0

0

x

C C C C y

lp p p'

q M q q' l

r r OP r'

    

                                                                         

K I ρ δ ρ δ ρ  

The kinetic energy of the rotor is 

(1.14)     
1 1 1

2
( )

1 1 1

1 1
, ,

2 2

r abs

C C C

p

T T T M p q r q

r

 
       
 
  

v I  

The body-platform’s linear momentum and the angular momentum (about the system 

mass center C) are 

(1.15) 
2 2

(2) (2)

2 2 2 2;abs

C C CM CC   Q v K K Q   

where the absolute velocity of the mass center of the platform-body can be presented in 

projections on the axes :C  

(1.16)  
2 22

abs

C C CCC    v ω ω ρ ρ   

Then the angular momentum of the platform about the point C in projections on the axes 

C  takes the form 

(1.17)      
2 2

(2)

2 2C C C C C

p

q M

r



 
         
   
  

K I ρ ρ ω ρ ρ  

The kinetic energy of the platform is 
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(1.18)     
2 2 2

2
( )

2 2 2

1 1
, ,

2 2

r abs

C C C

p

T T T M p q r q

r

 
 

   
 
  

v I  

The main dynamical equations can be written using the well-known angular momentum 

theorem (1.19), and the methodology of the evaluation of the absolute derivative through local 

derivatives (in moving frames C  and C     ) with the final projection (1.20) of the vectors 

into the main moving frame C [Aslanov, Doroshin (2002)]: 

(1.19) ( )e

C C

d

dt
K M  

(1.20)   (1) (1) (2) (2) ( )e

C C C C C

d d

dt dt
             

   
        

   
δ K ω K K ω K M  

where ( )e

CM  is the vector of external torques, and all of the kinematical parameters are rewritten 

through the main components of the angular velocity of the platform (p,q,r) and the relative 

angular velocity of the rotor   using (1.5)-(1.9). 

 The relative motion equation can be constructed basing on changing the “longitudinal” 

components of the angular momentum of the rotor at the action of the external torque ( )

,1

e

CM    

(applied to the rotor-body) and the torque from the platform-body ( )iM  (e.g. internal friction 

between coaxial bodies): 

(1.21) (1) ( ) ( )

,1

e i

C C

d
K M M

dt
      

 The kinematical equations are correspond to the well-known Euler’s equations for Euler’s 

angles (the precession , the nutation , and the intrinsic rotation , with the addition of the 

relative angle ), which define the attitude of the main moving frame C relative to the 

inertial axes CXYZ (fig.3): 

(1.22) 
 

 

1
sin cos ; cos sin ;

sin

ctg sin cos ;

p q p q

r p q

     


     


   


    

 

1.3. The Hamiltonian form of equations at the presence of small dynamical 

asymmetry in the coaxial system 

1.3.1. Perturbing factors 

Firstly, let us describe the main factors of the possible asymmetry in the coaxial system. This 

asymmetry results in the perturbed dynamics of the system motion and also it can initiate the 

complex irregular dynamical regimes including heteroclinic chaos. 

1. The asymmetry factor #1 – the smallness (εI) of the “diagonal” asymmetry of the 

inertia tensors. 
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This type of the small asymmetry factor corresponds to the smallness of values of 

“rotation angles” (αi, βi) of the inertia tensors’ matrix with the recalculation in the first 

approximation 

 1 1 2 2sup , , ,    I   

 

1 1 2 2

1 1 2 2

, ,

, ,

, const 1 1,2i i i

     

     

 

 

 

  

I I

I I  

(1.23) 

1 0

, 0 1

1

i

i i i i

i i



   

 

 
 

 
 
  

S  

Then the tensor of inertia takes the decomposed form (in the linear approximation and 

with the selection of the small part) 

(1.24) 

 

1 0 0 0 1 0

0 1 0 0 0 1

1 0 0 1

0 ( )

0 ( )

( ) ( )

0 0 0 0 ( )

0 0 0 0 ( )

0 0 ( ) (

i i i

i i i i

i i i i i

i i i i

i i i i

i i i i i i i

i i i i

i i i i

i i i i i

A

B

C

A A C

B C B

A C C B C

A A C

B C B

C A C

 

 

   

 

 

   



 

 

    
    

      
         

 
 

   
   

  
 

   
   

I

I

I I

I

I

) 0i iC B

 
 
 
  

 

2. The asymmetry factor #2 – the smallness (εB) of difference of the equatorial inertia 

moments of the coaxial rotor. 

This type of the small asymmetry factor corresponds to the smallness of the 

dimensionless value of the relation  

 1 1
1 1

1

; 1B B

A B
B A

A
 


     

In addition to the factor #1 we obtain the form for the inertia tensor of the rotor with the 

small dynamical asymmetry in the compliance with the factor #2 (eliminating the terms  

proportional to the product of factors I B  )  

(1.25)

     

 

 

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1

1

1
1 1 1 1

1 1

1

1 1

0 0 0 0 ( )

0 1 0 0 0 ( 1 )

0 0 ( ) ( 1 ) 0

0 0
0 0

0 0 0

0 0
0

B B

B

B

A A C

A C A

C A C C A

A
A

A A C
A C

C



   

  

 


 

   

   
   

        
        

 
   

         
       

I

I

I

I I

I
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3. The asymmetry factor #3 – the smallness (εl) of the linear displacement of the coaxial 

bodies axes from the common rotation axis. 

The factor #3 can be described by the following relation 

        1 1 2 2

1 2

, sup , , ,l x y x y

l
l l l l l

PP
     

       

 

1 1 2 2

1 1 2 2; ; ; ;

const 1 1,2; ,

x l x y l y x l x y l y

ij

l l l l l l l l

l i j x y

      

   
 

So, finally, we can involve the main small dimensionless parameter by the selection of 

the biggest value from considered factors: 

(1.26)  max , , ; ; ;B l B B l le e e            I I I   

where eI, eB, el =const≤1. 

1.3.2. Perturbed dynamical parameters 

Now we can simplify the main geometrical, inertial, kinematical and dynamical parameters 

taking into account only linear parts of corresponding series (~ε). 

(1.27)

 

 

 

2

1

0 0 0 2 2 2

0 0 0 1 1 1

2 2 1 1 1

0 0 0 2 2 1 1 1

2 1
2 1 1

2 2

: , , ;

: , , ;

cos sin

: sin cos ;

0

1 cos sin

: 1

T

C l x y

T

C l x y

x x y

l
C y x y

x x y

l y

Ox y z e l l OP

Ox y z e l l OP

M l M l l

e
Ox y z M l M l l

M

M M
l l l

M M

M
C CC e l





 


 

 

 

   

       

  
 
   
 
 
 

 
   

 

 

ρ

ρ

ρ

 2 1
1 1

2

sin cos ;x y

M
l l

M M

OP

 












  
  
  
       
   
    
  

 

where 1 2M M M  . 

(1.28)  

 

 
1

1 1

1 1

1 1

cos sin

cos sin ;

y x l y

abs

C x y l x

y x l y l x

OPq r P P e l r'

OP p r P P e l r'

P p P q e l p' e l q'

  

  

 

    
 
     
 

   
 

v  
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(1.29) 

 
 

   
2

2 2

2 2 2

2 2

;

y l y

abs

C x l x

y l y x l x

OP q P e l r

CC OP p P e l r

P e l p P e l q





 

   
 

     
 

    

v ω  

 

 

2 2 1 1 1

2 2 1 1 1

cos sin ;

sin cos ;

l
x x x y

l
y y x y

e
P M l M l l

M

e
P M l M l l

M


 


 

     

     

 

The angular momentum of the platform-body is 

 

 

 

 

 

2

2 2 2
2 2 2

(2) 2

2 2 2 2 2 2

2 2 2 2 2 22

2 1 1

2 1 2
2 1 1

2 1 1 2 1

( )

( )

( ) ( )

cos sin

sin cos

cos sin sin

C I

x x y

l y x y

x x y y x

A M OP p A C r

B M OP q e C B r

A C p C B qC r

l l l r

M M OP
e l l l r

M

l l l p l l l





 

 

 

  

  

     
         
      

 

   

    

      

K

 1 cosy q

 
 
 
 
 

    

 

The angular momentum of the rotor-body is: 

  

  

 

 
 

 

   

 

 

2

1 1 1

(1) 2

1 1 1

1

1

1 1 1

1 1 1 1

1

2 2 1 1

2 1 1

cos sin

cos sin

cos sin sin cos

0

sin cos

0

sin cos

C

B

y x x x

l

A M OP p q

A M OP q p

C r

r

e A C r

p q

e A p q

r l l l l

M M OP
e

M

  

 

 



 

  

       

  

  



  

  
 
    
 

 
 

 
 

     
 

    

 
 

   
 
  

  



I

K

 

   

2 2 1 1

2 1 1 2 1 1

cos sin

sin cos sin cos

y x y y

x y x y x y

r l l l l

p l l l q l l l

  

   

 
 
   
 
     
   

So, the system angular momentum can be written in the main connected platform’s frame C  

 (2) (1)

C C C      
  K K δ K  

Now we have the expressions for the angular momentum of the coaxial system with the complex 

asymmetry, therefore, we can write expressions for the Serret-Andoyer variables [Serret (1866); 
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Andoyer (1923); Deprit (1967)]        2 3, , , , , , ,l L G H     (also known as the Andoyer-Deprit 

variables [Arkhangelskiĭ (1977); Ivin (1985)]). These variables describe the position of the 

angular momentum vector in the inertial frame of references and also in the connected frame 

(fig.2). The Serret-Andoyer variables can be involved by the classical way of correspondences 

finding between the variables and the angular momentum’s components: 

(1.30) 

(1) (1)

2 2 2 2

; ; ; ;

sin ; cos ;

C CZ C C

C C

L K G H K K K

G L l K G L l K

  

 

     

   

K
  

After substituting the dependencies for the angular momentum components into (1.30) the exact 

expressions for the angular velocities in terms of the Serret-Andoyer variables follow as the 

formal solution of the linear algebraic equations relatively components {p, q, r, σ} – these 

expressions called as the “conjunctional” expressions: 

(1.31) 

     

     

     

     

0 1

0 1

0 1

0 1

, , , , , , , , , , , , ;

, , , , , , , , , , , , ;

, , , , , , , , , , , , ;

, , , , , , , , , , , , .

p p l L G p l L G p l L G

q q l L G q l L G q l L G

r r l L G r l L G r l L G

l L G l L G l L G

   

   

   

      

      


     


     
      

  

It is possible to allocate the “unperturbed”  0 0 0 0, , ,p q r   and “perturbed”  1 1 1 1, , ,p q r   

components linked with the concrete asymmetry factor: 

(1.32) 
 1 2 12 2 2 2

0 0 0 0

2 1 2

1 1
sin ; cos ; ; ;

C C C LL
p G L l q G L l r

A B C C C


  
       

(1.33) 1 1 1 1; ; ; ;l l B B l l B B l l B B l l B Bp e p e p e p q e q e q e q r e r e r e r e e e              I I I I I I I I     

where (considering that  2 2 1 1 0CM OP M OP M     ) 

     2 1 2 2 1 1 2 1 1

1 2

1
cos sin ;p C A C L C A C

AC C
             I

  

2 2 2

1 2

1 1
sin sin cos cos sin ;Bp A G L l l

A AB
  

 
   

 
  

  1 2 2 2 2 1 1 1 1

1 2

1
cos sin ;l x x yp L C M OP l C M OP l l

AC C
          

     2 1 2 2 1 1 2 1 1

1 2

1
sin cos ;q C C B L C A C

BC C
             I

 

2 2 2

1 2

1 1
cos cos sin cos sin ;Bq A G L l l

B AB
  

 
   

 
 

  1 2 2 2 2 1 1 1 1

1 2

1
cos sin ;l y y xq L C M OP l C M OP l l

BC C
         

   
2 2

2 2
2 2 2 2

2

sin cos ;

0;B

G L
r A C l C B l

C A B

r

  
     

 



I  
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 

 

2 2

1
1 1 1 1 2 2 2

2

1 1 1 1 2 2 2

sin
cos sin

cos
cos sin ;

l x y x

y x y

M G L l
r M OP l l M OP l

MC A

l
M OP l l M OP l

B

 

 

 
      




     



     

     

1 1 1 1 2 2 22 2

1 1

1 1 2

1 1 1 1 2 2 2

1 1

1 1 2

sin cos cos

sin cos sin ;

0;B

C A C A C B
G L l

BC BC BC

C A C A A C
l

AC AC AC


    


   



    
      
   

   
   
   



I

 

 
   

2 2

1 2 1 2 2 1

1 1 2 1 1 2

1 2

cos sin
sin cos cos sinl x y y x y x

M M OPC OP C G L l l
l l l l l l

MC C B A
    

   
      

 

 

with the flowing notations for the inertia moments 

2 2 2 2

2 2 2 1 1 1 2 2 2 1 1 1 1 2; ;A M OP A M OP A B M OP B M OP A C C C           

So, now we can write the kinetic energy form taking into account only linear parts of the 

expansions by the small parameter 

platform rotorT T T   

 

 

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 1 2 1
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1 sin cos 1 cos sin

;
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I
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O
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    



           

      

       
                     

       


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1 1
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I
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   
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 
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1

2 1
2 1 1
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y
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 

    

    


  



  
        

 

 
         

  

 

Taking into account that  2 2 1 1 0M OP M OP   we can simplify the expression: 
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  

 

        
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2 1

21
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2
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
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         

    

     

   

            

     
                

    

 

   

1
1 1 1 1 1 1

21
1 1 1 1

cos sin sin cos

sin cos cos sin

x y y x
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M
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M
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M

    

     




  
             

 

 
            

 

 

So, the kinetic energy can be divided on “unperturbed” (T0) and “perturbed” (Tε) parts: 

(1.34) 
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
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    

   

      

     
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       

 
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



    

       
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                  


  

             
 

 

 Now it is possible to write the kinetic energy and the Hamiltonian of the coaxial system 

in the Serret-Andoyer variables in the first order of the approximation (relatively ε) basing on the 

“conjunctional” expressions (1.31) for the angular momentum components: 

(1.35)         
2 0

0 0 0 0 0, , , , , , , , , , , , , ;T l L G T p q r Lin T p q r T p q r


    


     

where 

(1.36) 

   

      
   

2 2 2

0 0 0 1 0 0 1 2 0 0 1

2 2
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1
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   

                

        
 

 
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and in its turn 

(1.37) 
  
 

22 2 2

0 0 0 2 0 1 0 0

0 1 0 1 2 0 1 1 0 1 0 1 1 0 0 1

1
;

2
T Ap Bq C r C r

T Ap p Bq q C r r C r r r r



   

    

      

 

So, we have the final expression for the kinetic energy written in the Serret-Andoyer variables 

(1.38)      0 0 0 0 0 1 0 1 0 1 0 1 0 1, , , , , , , , , , , , , , ;T l L G T p q r T p p q q r r        

     1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0, , , , , , , , , , , , , , , , ,T p p q q r r T p p q q r r T p q r      . 

If we reduce the corresponding perturbed parts/terms, then the expression follows: 

(1.39) 1 B lT T T T  I
 

where 
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

   
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1.3.3. External and internal perturbing torques 

In addition to the described “asymmetry perturbations”, the natural/artificial external/internal 

disturbing forces/torques can be presented. These forces/torques are possible due to actions of 

external gravitational and/or electromagnetic fields, due to the existence of dissipations from the 

rarefied atmosphere and/or the internal friction of the system’s bodies, due to implementations of 

the control systems signals by actuators, etc.  

1.3.3.1. The magnetic torques 

 As the basic case we will consider the angular/attitude motion of the relatively small 

DSSC with a permanent magnet (placed along the longitudinal axis of the DSSC) about its center 

of mass at the implementation of the orbital motion along the equatorial circle orbit of the Earth. 
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In this case, as it was shown in the works [Doroshin (2013b), (2015)], we can, firstly, neglect the 

influence of the gravitational torque and, secondly, consider the vector of the Earth magnetic 

field’s induction 
orbB  as the constant vector (in the inertial space CXYZ) with corresponding 

magnet torques initiation like in the well-known Lagrange-top. 

 

Fig.2 The Serret-Andoyer variables 

 Let us assume that the DSSC own magnetic dipole moment m is created by some 

electromagnetic equipment (permanent magnets in the simplest case) placed in the rotor-body. 

We will consider the case when this dipole moment has a preferably longitudinal (along P1z’) 

direction (with the corresponding component m) and small (ε) constant components along the 

equatorial rotor-axis (P1x’, P1y’): 

(1.43) 

0 0 0 ' y'
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 

  

 

        


    


 


m

 

where the angular parameter χ is artificially introduced for the convenience of the interpretation 

of the magnet dipole’s “equatorial” projections disposition. The multiplier  me m m   can be 

interpreted as the dimensionless scale factor relative to the main small parameter ε. 

 So, in the indicated case (the corresponding conditions and features are described in 

works [Doroshin (2013b), (2015)]) we can consider the attitude motion of the DSSC as the 

motion of the coaxial rigid-bodies-system around the fixed point under the action of 

restoring/overturning torques which are analogous to the generalized coaxial Lagrange-top. 

 The corresponding magnet torque has the form 

(1.44) m orbM = m B   

which can be written in the projections onto axes Cξης: 
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(1.45)       1 2 3cos , cos , 1 , ,
T T

orb m mmB e e         mM = δ  

 

 

   

3
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1 3

2 1

sin cos

cos sin ;

0 cos sin sin cos

orb m

c s

mB e c s

c s c s

 

 

   

  

    

     

     
      
   
         

 

where sin ; coss c    ; the vector  1 2 3, ,
T

    defines the “vertical” inertial direction CZ 

coinciding with the constant position of the vector 
orbB , and also it corresponds to the vector of 

directional cosines of this “vertical” axes in the frame Cξης which has the following components 

depending on the Euler angles (fig.3): 

(1.46) 1 2 3sin sin ; sin cos ; cos            

 

Fig. 3. The Euler angles 

It is needed to note that the magnetic torque can be decomposed on two torques: the 

restoring/overturning torque Mθ and the small rotational torque m

M . This restoring/overturning 

torque Mθ corresponds to the Euler-torque along the “nodes line” CJ, that is formed by the 

projection of the magnetic torque Mm on the “nodes line”; and the small rotational torque is the 

projection of the magnetic moment on the longitudinal axis Cς: 

(1.47)      
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  


        


     


 

Now we can write these torques as the generalized forces defined by the potential energy (or, 

that is the same, we can define the corresponding potential energy): 
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(1.48) 
0 1 0; cos ;orbP M d P P P mB          

   1 sin sin cos cos cos sin sinm orbP e mB c s c s               
 

It is possible to make sure that the correspondences are correct: 

(1.49) 1; m PP P
M M 

  


 
     

  
 

So, we further will consider the important unperturbed ( 0  ) case of the motion, when 

the vector of the initial angular momentum of the system is coincided with the “immovable” 

vector 
orbB : CZ orbK B ; then the system angular momentum also will be the constant 

vector which is motionless in the inertial space ZK K K  since in unperturbed cases 0m

 M , 

CZ M  (it does not change the “vertical” CZ-component of the angular momentum), and, 

therefore, constK . Then, turning to the Serret-Andoyer variables (1.30), we can write the 

following important expressions, which connect the Serret-Andoyer variables with the Euler 

angles: 

(1.50) 
2 2

3 2

const; cos ; sin ;

0; ;

H G L H L G G L G

l

 

   

      


  

  

Therefore, as it was also indicated in the previous works [Doroshin (2013a), (2013b)], the Serret-

Andoyer angle l in the considering case is fully corresponds to the intrinsic rotation angle (l=φ); 

and the nutation angle θ cosine is corresponds to the relation of the Serret-Andoyer impulses, 

and the angle 2  is, per se, the precession-angle. 

So, with the help of formulas (1.50) the potential energy (fully describing the magnetic 

torque (1.44)) can be written in the Serret-Andoyer canonical variables: 

(1.51) 0 1 0; ;m L
P P P P Q

G
     

   
2 2

1 sin cos cos cos sin sin ;m

m

G L
P e Q c s l c s l

G
      


       

where  

constorbQ mB   . 

 

1.3.3.2. The friction torque between the coaxial bodies 

Let us assume the presence of the small friction torque between the coaxial DSSC’s bodies 

(affecting the angle of the relative rotation δ), which has a two-part form, collecting the “liquid-

type” friction ( flM ) and the “dry-type” friction ( fdM ), depending on the value of the relative 

angular velocity (σ), and on its sign, respectively: 
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(1.52)  ; sign ; ,fl fd f fl fdM M M M M e e 


     


                   

where ,e e       are the dimensional scale factors of the small friction’s parts. Taking 

into account only terms of the first smallness order (ε) and basing on the expressions (1.31), 

(1.32), (1.33) we obtain the form of the friction torque in the Serret-Andoyer canonical variables: 

(1.53)    1 2 1 1 2 1 2 1

1 2

1
;f f fM m m C C C L e e C C C C C L

C C
   

           
   

, 

or in the form 

(1.54) 

       

      

1 2 1

1 2

1 2 1

1 2

,

sign sign

f e
m C C C L e F t e t e F t

C C

e
F t C C C L t

C C


  










           




             

 

1.3.3.3. The electromagnetic internal torque of the spinning up the rotor 

Let us define the form of the torque into the internal DSSC-rotor-electromotor (DC), which 

we can use for the modeling spin-up dynamics and stabilizing of the constant angular velocity of 

the rotor-body of the DSSC. We can simulate the magnitude of the electromotor’s torque as 

proportional to the current intensity (I); and in turn the current intensity depends on the voltage 

(U), on the counterelectromotive force (EB) and on the electric resistance (R) of the circuit: 

(1.55) ; ;DC

I B B BM k I E k U IR E      

From the equations (1.55) the DC-motor’s torque expression follows 

       ;

const; const

DC I
B U

U I I B

k
M t U t k k U t

R

k k R k k R

 



    

   

 

So, we, as in the past sections, will consider the case of perturbations, when the torques are 

small: 

(1.56)    1 2 1

1 2

1
; ; ; ,DC DC DC

U U UM m m e U t e C C C L e k e
C C

      
             

or in the form 

(1.57) 
   

   

,DC

Um e t e F t

F t U t


   




 

 

1.3.3.4. The positional polyharmonic torque from the control system 

Additionally the control torque can act on the coaxial rotor from the side of the internal 

spinup-engine which is controlled by the control/stabilizing system.  
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This torque can correspond to the special control signal for tracking of the complex time-

dependence; or it can be piecewise constant (with alternating/constant signs) in order to create 

corresponding piecewise spin-up/spin-down maneuvers of the rotor; or it presents a trigger mode 

to maintain a nominal value of the relative angular velocity, etc. Also unwanted spurious control 

signals are possible (e.g. small harmonic signals in stabilization systems at delays in feedback 

loops) which lead to corresponding spurious torques. 

Let us consider the case of the polyharmonic spurious torque which is actual practically in 

any case of periodical perturbations and corresponds to the general form of the expansion in  

Fourier series by the relative rotation δ phase, taking into account N harmonic components 

[Doroshin (2014c), (2015)]: 

(1.58)    
1

; sin cos
N

n n

n

M m m e a n b n  

    



      

where ,n na b  are the constant Fourier coefficients, and e is the scale factor of the polyharmonic 

perturbation smallness. 

 Formally we can present the torque (1.58) as the potential one with the corresponding 

small part of the potential energy: 

(1.59)    1

1

sin cos ; ;
N

n n
n n n n

n

b a
P m d e a n b n a b

n n

 

  



           

Here we note that this polyharmonic form can be considered as the general Fourier series 

expansion of the arbitrary control torques acting in the internal DSSC rotor-engine. 

1.3.4. The perturbed Hamiltonian and the perturbed equations system 

The constructed above expressions for the kinetic energy (1.38) (with parts (1.39), (1.40), 

(1.41), (1.42)) and potential energy terms (1.51), (1.59) at the conditions (1.50) allow us to write 

the following Hamiltonian ( ): 

(1.60) 0 0 01 1 1 10; ;;T P T P      

where 

(1.61) 

 
22 2 2

2 2

0 0

1 2

1 1 1 1

1 1 1
sin cos ; ;

2 2

; m

B l

LG L L
T l l P Q

A B C C G

T T T T P P P

     
        

     


     I

 

The corresponding dynamical equations in the canonical Serret-Andoyer variables are 

(1.62) ; ; ; ;L L l lL f g f g l f g f g                

where the following right-parts-functions take place (including the perturbations (1.53), (1.56)) 
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(1.63) 

0 0 0 0

1 1 1 1

; ; 0; ;

; ; ; ;

L l

f DC

L l

f f f f
l L

g g g m m g
l L











  

   
          


           

    

 

so, we can note the presence of the non-Hamiltonian parts  ,f DCm m   in the dynamical equation 

for Δ, which disrupts the system conservativeness. Also it should be underlined that the 

equations (1.62) correspond to the fourth-order-system, but the considering DSSC mechanical 

system has four degrees-of-freedom and, therefore, we must formally add four equations for 

unnoticed canonical coordinates and momentums: 

(1.64) 
2 3

2 3

0; ; 0; 0G H
G H

 
 

   
        

   
 

The equations (1.64) present the subsystem of the complete dynamical model for the cyclic 

coordinates, which do not affect the dynamics of the positional variables, and we can consider 

the system (1.62) as the main independent dynamical system. 

 

2. The heteroclinic solutions for the attitude dynamics of the DSSC 

It is well-known fact that the separatrix regions of the dynamical systems phase portraits are 

very sensitive to perturbations, that results in a homo(hetero)clinic net generation, in a dynamical 

intricacy, and in the dynamical chaos appearance. In the purposes of the investigation ща еру 

possible local dynamical chaotization (including tasks of the chaotic regimes avoidance) we 

need, first of all, to have exact analytical time-dependencies for the corresponding unperturbed 

homo(hetero)clinic separatrix. Based on the works of H.Poincaré, V.I.Arnold, V.K.Melnikov, 

P.J.Holmes, J.E.Marsden, J.Guckenheimer, S.Wiggins, V.V.Kozlov, A.I.Neishtadt and other 

well-known researchers, these dependencies are used for the homo(hetero)clinic tangles 

detection and for the parametrical synthesis for the chaotic regimes avoidance. 

2.1. The main heteroclinic solutions for the angular velocity components  

So, as it was indicated above, generating unperturbed exact solutions/dependencies for the 

homo(hetero)clinic separatrix are necessary for the local dynamical chaos analysis.  

As these generating solutions in this research we will use the heteroclinic solutions for 

magnetic DSSC which moved along the equatorial circle Earth orbit [Doroshin (2012), (2013b), 

(2015)] at the condition of the “cylindrical precession” realization. It means that the vector of the 

system initial angular momentum is coincided with the “immovable” (in the framework of the 

considered research formulation) vector 
orbB , so the expressions (1.50) are fulfilled. 

These solutions generalize corresponding solutions for the free DSSC motion, and can be 

applied to the chaotic DSSC dynamics investigation in the considering case. 

The following generating (ε=0) heteroclinic solutions         , , ,p t q t r t t  are actual 

[Doroshin (2015)]: 
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(2.1) 

 
 
 

      

         

22 2 2 2

2 1 1 2

; ;

; ;

C B C
p t y t q t s k y t E

A A B

EB EB
r t y t t r t y t

B C C C B C

 



 
        
 

       

        
  

 

where 

(2.2)  
 

 

0

2

1 2 0

ˆ4 exp
,

ˆ exp 4

a

a

a E t
y t

E t a a a





  
 

 

with the following set of the values: 

   
 
 

2 2 22 2 2 2 2

2 1 0const 0; 0; 2 ; ; ;
C A C

a k a E k a s k E k
B A B

   


              


 
 

2

0

2 2 2 2

1 1
; ; ; ;

s A B H
y E s

k A C B C B C A C B A B
             

    

   
2 2 2 02

0

2 1

2
22 2 2 2 2 2 2 2

0 0 0 2 0 0 0 2 0

1

2 1 2 ; ;

2 ; ; ;orb

C rC A
H T A D EA EA T T Q

A C C K

T Ap Bq C r K A p B q C r Q Q mB
C

    
             

   


              

   
2

0 1 0 2 1 0 0

0 2

2 2 ˆ; ; ;
df

a a a

a a z a a z a z a M a
E z E E y

z k


    
   
  

 
   

 
2 2 2 222

2 1

1
1 2 ; ;

2

A C C B CC B Q
D B EB EB E M

T B C C K B A A B

     
                    

 

As it follows from the last solution (2.1), the heteroclinic solution for δ takes place: 

      
1 1 2

;
EB

t dt r t dt t y t dt
C C B C

 
     

        
   

    

or in the reduced shape: 

(2.3)  * 0;t v t      

where 

(2.4) *

1 2

;
EB

C B C


   
  

 
 

(2.5)      0 ;v t t    

(2.6)    
  10

2 0 2

ˆ exp2
arctg .

2

aE t aa
t y t dt

a a a





 
   
 
 

  
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The same form of the quadrature (2.6) was also obtained by the author in the article 

[Aslanov, Doroshin (2010)], where analogous   solution was found for the case of the non-

magnetic gyrostat (when the solutions [Doroshin (2012)] are also useful). Here additionally we 

can indicate that the function y(t) is even function damped to zero at t→±∞ (fig.4); and the 

function  v t  is the odd-function (fig.4) saturated to the value * : 

(2.7)  
     

 0
*

2 2 2 2 2

; 0
a AB AB

a B C A C B C A C


  


     

   
 

 
Fig.4. The main heteroclinic time-dependencies 

 

Also it is possible to write the corresponding obvious heteroclinic solutions for the Serret-

Andoyer variables in the generating case (ε=0) using the connections (1.32): 

(2.8)       
 

 
  

 

 
2

2 2 2 2
; sin ; or cos

Ap t Bq t
L t C r t l t l t

G L t G L t

 
     
   

 

The solutions (2.1), (2.6) and (2.8) are used in the next part of this paper for the chaotic aspects 

analysis. 

2.2. The heteroclinic solutions for the action-angle variables of the coaxial rotor 

relative rotation  

In purposes of the S.Wiggins’ methodology [Wiggins (1988)] application for detecting  

intersections of the split separatrix homo(hetero)clinic manifolds, we need to use the form of the 

dynamical system with the reduction of the rotating-phase-variable to its corresponding action-

angle type. We can additionally indicate, the same transformations of the variables to the action-

angle types are also needed for the application of other modified Melnikov’s-methodologies, 

including the Arnold’s [Arnold (1964)] and the Holms’-Marsden’s methodologies 

[Holmes & Marsden (1983)]. At least, these methodologies require using reducible variables 

which “play roles” of the action-angle-variables [Holmes & Marsden (1983)].  
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In our case the δ-variable plays the role of the rotating-phase-variable (with the 

corresponding canonical momentum Δ), and, therefore, we need to obtain the modified form of 

the dynamical system (1.62) at the reduction of this canonical pair {δ, Δ} to the corresponding 

canonical action-angle pair {wδ, IΔ}. It is also important to remind the obtained results for the 

decomposition of variables in the task of a gyrostat motion [Ivin (1985)], and for action-integrals 

[Aslanov (2012)]. 

 In the framework of the action-angle pair {wδ, IΔ} construction, we have to note, firstly, 

that the “generating function” must be constructed for the implementation of the transition 

between the canonical variables    , ,w I   . Secondly and most importantly, for using the 

S.Wiggins methodology we should obtain the explicit exact solution form of this action-angle 

pair on the heteroclinic separatrix  ,w I  . 

So, we will find the generating function of the canonical transformation in the general form 

(2.9)  , ,i iW W t q p  

where  ,i iq q  symbolize the “old” and “new” canonical coordinates, and  ,i ip p  are the “old” 

and “new” canonical impulses. Then the correspondences take place (  is the “new” 

Hamiltonian) 

(2.10) ; ;i i

i i

W W W
p q

q p t

 


 

 



 

The concretized shape of the generating function we can obtain basing on works 

[Arkhangelskiĭ U.A. (1977)] and [Sadov Y.A. (1970)].  

 As it possible to see, for our task the first integrals are relevant 

(2.11)  01 2const , , , c t; onsl L         

Now we formally solve the expressions (2.11) as the equations relative the momentums 

(2.12)        1 2 1 2 1 2 1 2, , , , ; , , , ,LL L l F l F                

where  1 2 2, ,F         and the concretized form of the exact dependence  1 2, ,LF l    can 

be easy obtained from the first expression (2.11) as the solution of the quadratic algebraic 

equation, but we leave it in the general form without changing (it will not be needed further). 

 The formal expressions for the actions are (here closed integrals are taken over a total 

period of the integrated function, or in case of its constancy – on the 2π-interval of the 

arguments’ variation): 

(2.13)  1 2

1
, , ;

2
L LI F l dl 


   

(2.14)  1 2 2

1
, ,

2
I F d    


      

From the last equalities (2.14), (2.13) we formally express constants 2 1,   through the action-

constants , LI I :  

(2.15) 2 ;I      

(2.16)  1 1 , ;LI I     
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where we do not find the explicit form of the expression (2.16). 

Then the concretized shape of the generating function can be written as the complete 

integral from the following total differential [Arkhangelskiĭ (1977); Sadov (1970)]: 

(2.17)     1 2 1 2, , , , ,L LW F l dl d F l dl           

where we formally replace the constants 
2 1,   through the action-constants , LI I

 using (2.15) 

and (2.16):  

(2.18)       1 1, , , , , ,L L L LW F l I I I dl I d F l I I I dl I              

Now taking into account (2.10) we obtain the formal form of the rotating-phase-angle 

(2.19)   1, , ,L L

W
w F l I I I dl

I I
    

 

 
  
    

The reverse interpretation of the formula (2.19) is possible: the Cartesian angular 

coordinate δ is expressed through the “new” rotating-phase-angle wδ and the “old” Serret-

Andoyer angular coordinate l (also the actions-constants are included) by the following manner: 

(2.20)    , , , ;Lw l w v l I I          

where  

(2.21)     1, , , , ,L L Lv l I I F l I I I dl
I

   





   

Also from the expression (2.20) the partial differentiation’s equivalence follows: 

(2.22) 
     
w w 



 

  
  

   
  

 If we remind that the canonical variable wδ belongs to the action-angle-type of variables, 

then, based on their main properties, the “action” (IΔ) is constant, and the “angle” is a linear 

time-function (wδ=ωδ·t+w0). In our research we will focus on the heteroclinic orbits, and 

therefore it is important to obtain the heteroclinic solution for the rotating-phase-angle wδ. As 

can we see from (2.3), the heteroclinic solution for the Cartesian angle δ contains the main linear 

time-part *t  and the additional aperiodic saturable term  v t . If we compare the structure of 

the   heteroclinic solution (2.3) with the structure involved by (2.20), then we explicitly 

conclude that the equalities are fulfilled 

(2.23) 

    
 

  
 

   

, , , ,

1

, , , ,

, ,

, , , 0 ;

L
p q r

L L

p q r

v t v l t I I

F l I I I dl t
I

 
 

 





 



 

 
    

 


 

where the lines above the symbols and designations  , , , ,p q r    indicate the parameters, 

which belong to the heteroclinic solutions. As the final result of the comparison we can obtain 

the following values for the heteroclinic parameters: 
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It is very important to note the “coincidence” of the “new” Hamiltonian form and the 

“old” Hamiltonian form after canonical transformation   (whereas 0W t    ), that do 

not change the substantial structure of the dynamical system; so we can take into our 

consideration only corresponding “conjunctional” reciprocal transformations between the “old” 

and “new” canonical variables, if needed. This fact allows us to use the set of canonical variables 

which can collect a part of “new” and a part of “old” canonical variables. Therefore, we can 

include into our further investigation the “old” positional canonical pare {l, L}; and for the 

description of the rotating phase we will use the both forms, including the “old” Cartesian pare 

 ,   for the natural dynamics modeling, and the “new” action-angle pare  ,w I   for the 

Melnikov-Wiggins function evaluating via formal substituting the “conjunctional” heteroclinic 

solutions. 

Conclusion 

In this part of the two-part paper the attitude motion of the asymmetrical magnetized 

DSSC in the constant magnetic field (it corresponds to the equatorial circle orbits of the 

Earth/planets) at the implementation of the important regime of the cylindrical precession was 

considered; the corresponding main models and heteroclinc solutions (including the obtained 

action-angle time-dependencies) are constructed/presented. These models are most complete in 

the sense of the possible cases of the constructional and mass-inertia asymmetry of the DSSC. 

Also the Hamiltonian form and required conjunctional expressions were obtained for the 

considered types of the asymmetry and perturbations. All of these models and solutions will be 

used in the next part of this paper for the investigation of the chaotic aspects of the DSSC 

perturbed motion, and for the chaos-suppressing tasks solution.  

So, we would like to invite our readers to reading the second part of this paper 

(The Part II – The heteroclinic chaos investigation). 
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